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1.  INTRODUCTION

The analysis of the dynamics of é 2D system with coefficient over a field K is
conveniently developed by resorting to pb]ynomia] (or serial) representations of se-
7 éuénces'of 10c§1 states‘[1,2]. In this way, one time variable is associated to the
gradation of a pp1ynomia1 (or serial) module and the state updating equation of the
resu]tﬁné system has the standard structure of a 1D free linear system over the ring
of polynomials [3].

Nevertheless, some problems arisihg in 2D systems cannot be solved in the gene-
ral context of a theory of systems over rings. In fact, meanly in realization and
cdntrof problems, the solutions given by the theory of systems over rings do not
necessarily lead to systems haviﬁg ZD.structure, that is to systems where the causa-
lity connected to the partial ordering induced in Zx Z and the first order state

‘updating recursion are preserved.

2. 2D RECURSIVE STATE EQUATIONS AND INTERNAL PROPERTIES
The dynamics of a 2D system is represented by the following updating equations

:-;[}]:"

u(h+1,k)+B.ulh,k+1)

~ x(h+1,k+1) = Alx(h+1,k)+A2(h,k+1)+B1 )

y(h,k) = Cx(h,k)

’

where the Tocal state x is an n-dimensional vector over a field K, input and output

values are scalar and A1,A2,81,82,C are matrices of suitable dimensions with entries

in K,
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The global states on the separation sets

= {(h,k) € ZxZ, htk=1} , 3 = B

are the elements of the direct product of the local state spaces on %’ Bilateral

"7 Laurent formal power series provide a convenient tooI for representing the global

state dynamics.
“According to this approath, let
+oo

_"fl',i rox(i- J,J)Ej | = _‘ . (2

J:-—oo %, . =

'repreéeht the global state on %2, and

4-c0 A . +co .
o, = zouli-ige . ¥ - 1t y(i-3.9)¢ (3)
(s j:—m B j:—m

the restrictions to %} of input and output functions. With this notation, input and

output functions can be written as

+co 4 ’ o0

u= & g, y= E @on' : (4)
o o i ﬂ . i
i=h i=k -

v &

 where h and k are integers. The set K"((£)) of (bilateral) Laurent formal power se-

b

" pies w1th coefficients in K" can be naturally endowed w1th the structure ~of a

~ the form /

[g,g ]-modu1e, where K[E,E ] is the subring of K(g) generated by K,£ and £'1

As a consequence of the module structure, the global state updating equations are

@ = (A, +A ) &.+(B +82£)4¥l, . =Cq. (5)

i+ 1 2 i 1 i i i

' : n
'If we restrict global states to belong to K((g)) and input functions to have

i

to
-z %in-i ] 02/1EK((E;)) s
i=h
system (5) can be viewed as a linear system over the field K((£)). Then 1D linear

theory applies and reachability and observability conditions correspond to assume

8oy~
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that the matrices

Pl ' n-1
R= [(Bi+$2€) (A1+A25)(B1+Bza) 3 ¥ (A1+A2£) (B]+82a)] S
: .
C(A +AE)
@.—_
(a4 )"
i e

l.have'fui1 rank over K((£)).

In the general case, global states and inputs can have infinitely many non-zero

_‘e1ements in both,directions 0f the separation set, so they are really 'bilateral’

and cannot be represented on K((z)) or K((g~1)). While global reachability of system

(1) and reachability of system (5) over the field K((g)) are equivalent, global ob-
- servability of (1) is not implied by observability of (5) over K((g)), so that glo-

- bal states with unilateral support which are distinguishable from each other can be

undistinguishable from global states with bi]atera] support.

/ v

Theorem 1. [2] The following facts are equivalent:

S (i) the 2D system (1) is globally reachable
;. (i1) det Z #0

e , , 2 ’
(i11) there exists an integer N(¥n ) such that any set of local statles

©(0,0), x(-1,1), ..., x(=N+1,N~1)

on f=10,0), (=131),...,(-N+1,N-1)} is the restriction to & of a global sta-

- teon (go' produced by some input function with compact support on #X 2.

/

Remark 1. Note that the 20 global reachability condition det # #0 is weaker than

the reachability condition for (5), when considered as a linear system with state
space K[g,g—1]n. The latter condition, which corresponds to det 2 = kgm(k#O), is

equivalent to require global states with compact support be reachable by input func-

~tions with compact support.
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Theorem 2 [2} The following facts are equivalent:

(i) the 2D system (1) is globally observable

.. m i )
(i1) det O =FkE" for some integer m and some non zero k in K

(i11) there exists a finite subset & C X% such that x(0,0) is uniquely determi-
ned by the free output values in F , whatever local states may be given on

Bk
ch\{(OSU}

Remark 2. If the.matrix @ is full rank over K((g)) and det @ is not invertible in

K[@,g_1], the subspace of global states which are undistinguishable from zero is fi-

nite dimensional over K.

IBg?re@ﬁi [4} System (1) is globally controllable to zero state if ond only ©f

(A1+A2£)@ factorizes as
(4 +4,8)" = | - | (6)

- ; - e s oy sk nxn
for some rational matyriz M in K(E) .

- Theorem 4 [4] System (1) is globally veconstructible if and only if (AI+A2£)n fac—

torizes as

(AI+A?5)” = T | , “ (7)

- ; , ; —InXn
or dome polynomial matrix T in K|&,& 5
b - 3

Remark 3. Global reachability implies global controllability. In fact condition (6)

~ can be fulfilled assuming M=2 (A +A.£)". Also, global observability implies 919

().

R
bal reconstructibility, since T::(A1+A2£)nt9—1 is in K[g,g-1]n}(n and satisfies
f‘l
3. DUALITY ’

Consider the system

w(t+1) = Flelw(t)+Gle)v(t) . z(t) = H(&)w(t) , (8)




defined over the ring of polynomials K[z,£71]. Here the input set is the ring

K[g,£~1][pw1j, the output set is the ring K[g,g_ﬁ][Dﬂ}, the states are elements of

the free module K[g;g"1jn and the matrices F(g), G(g), H(g) have entries in K[g,ﬁ_{l
Denote by ﬁ?p and Cb its reachability and observability matrices.

Comparing the results from the theory of systems over rings with those summari-

“zed in the previous section, we can see that:

.

BN

(i) the conditions for reachability (observability) of system (8) correspond

to the conditions for global observability (global reachabiiity) of a 2D system:

! 'reaﬁhabj]ity observability
. o
© system (8) | é%p unimodular ' @p full rank
. |
2D system . | & full rank & unimodular
| |

(ii) the conditions for controllability (reconstructibility) of system (8) cor

respond to the conditions for global reconstructibility (global controllability) of

a 2D system:
) { controllability reconstructibility
system (8) | F(g) = ;%bP Flg} =1L @p

l ) !
| Pek[. 1]nxn LEK(g)nxn
| .
o n n

2D system | (A1+A2£) = AN (A1+A2F,) =T0
| -
l MeK(ann TeK[&g1]nxn
| .

These facts are formally exp]ained‘by viewing 2D systems as dual of systems
over the ring K[g,g"1].
Let us briefly recall from [2] the main steps in the construction of the dual

system of (8).

. 1. The global state space of the 2D system (1), namely the space K;((g)), is the

algebraic dual of Kn[g,g—1], which is the state space of system (8):
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Sorang denote by n the projection map of K[g,g_1] [[n]] onto the subspace K[g,g-1][ﬁjn

(K"[z.e™")" = k(e

2. The output space Kb((a)) L[n]] of (1) is the algebraic dual of the irput space

4 . =1
- _whose elements are represented by series inn K

Yisamo.

- - - i i
n 1Kb[g,g 1] [n T] of system (8).
Similarly the space of 2D inputs whose support is in %in . %?‘1,i.e.

b((i)) [n-T]n, is the algebraic dual

of the space K[t,z '] [ﬁ]n of output restrictions to [0,n-1] of system (8):
-1 T -1

(K, ]ﬁﬂn) =ﬂ,KbH£U‘E11

) irLeﬁ o and o b§ the reachabi?ity and observability maps of (8):

S TS I, Y
o i Kle,e Il J>K[ese 1"

Q
r 2v(-q-p,p)ePn I

g=t p q

F(E)thG(a)zv(—q-p,p)ap .
. p. '

o~ 0

1

~1on = N 3 i j
o Klesg 1" ok[e,e " [N Exi?» 7 H(a)F(a)“zxiETnJ :
5 i j=0 i

of polynomials with degree less than n.

In the diagram

TR TR TR T . '-1
n K[g.e 1[0 ] »K[E.e ] . > Kle.e ] [,
ROk (it R |

S o is injective if and only if system (8) is reachable, w and W P EW W are surjec-

%)

- tive if and only if system (8) is observable.

In the dual sequence

6 (N [T] — K (N e— 0 K (N[,

* *
w
P n

p* and‘w; are the dual maps of p and W and provide the observability and the

T P L P PR Rty AP



‘n-steps reachability mapé of the dual system of (8) given by

W(ts1) = F(E)u(t)+H (£)Z(t) 7(t) = 6 (e)u(t) | (9)

where the'input and output alphabets are Laurent formal power series and the state

space 1is Kb((g))n.

Then, from the theory of dual spaces we have that p* is injective if and only

if p is surjective and w; is surjective if and only if W is injective.

Since the-reachability map of system (9)

B N(OM Ea B NIC T

is surjective if and only if w; is surjective, reachability (observability) of

system (9) is equivalent to observability (reachability) of system (8). In particu-

“lar, assuming

- T T T T
Flg) = A1+A2£ ‘ i(g) = B,

we have proved the following theorem:

/

Theorem SAlﬁj The 2D éystem (1) Zs globally reachable (observable) i1f and only if

“;m'the'system

i

-

do 3

w(t+1) = (A eu(e)+C o), &) = (BB Eu(t) (10)

defined over the ring K[E,E_?] ia obserﬁable (reachable).

By projectivity of the module K[E,£-1Jn, the controllability condition of (10),

T T.on
Im(A1+A25) grlm:%p ‘ o

/

is equiva1eht to the existence of a K[&,g_1]-modu1e morphism ¢ which makes the fol-

‘]owing diagram



T .1
“1an (Aﬁp‘zg)n S T
Klg.e '] Klg,e ]
T A, ' y (1)
NN
\\

Kl "= KGO,

commutative.

On the other side by the injectivity of the K[g,g—1]-modu1e Kg((g)) the recon-
structibility condition of (1),
Cker(A, +AE)" D ker O | o r ’ . (12)

} e

is equivalent to the existence of a K[g,g_qj—modu1e morphism ¢ which makes the fol-

lTowing diagram

(A, +A,E)"
K ((£)) e K((£)) |
« e l@ o BNCEY
' w \\\ ! -

commutative.

sswe— Theorem 6 Global reconstructibility of the 2D system (1) is equivalent to controlla

bility of the system (10) defined over K[g;g_z].

7' Proof. Assume first commutativity of the diagram (11). Since each of its maps admits

a dual map, we have

3 (alea )n"lr *9?* I
) = 9 R :
N
(A1+-P\2~;) = ¢ 0
2% : ) *
which guarantees the commutativity of (13) with v= 9 .

o
o .

’ o
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D

Conversely, assume reconstructibility of (1), i.e. the existence of ¢ which .

makes (13) commutative. Then, by taking the orthogonal complements of (12),

b 1
ker(A1+A25) c (ker @) ’
“and
*
AL 3. il
(ker(AI+A£g)n ) g_(kerg%p)

Hence by the properties of the spaces of linear functionals we have

LT T |
Im(A1+A25) g_imu%p

Then there exists @ which makes (11) commutative, and in (13) ¢ can be assumed
. K
as o .

The reconstructibility condition of system (10)

T T..n :
ker(A, +A,£) g.ker o, - , (14)

’ »

is equivalent to the existence of a K[g,gw1]~modu1e morphism x which makes the follo

“wing diagram

8. ' =140 (AI+A;g)n =140
o K[g,e ] —— K[g.g ]
T~ | . 15
- 0, (15)
v e .
Im @
P

commutative.

3
/

‘In fact, (14) is an obvious consequence of the existence of y. Conversely (14)

=== implies the existence of a K[E,£"1]—modu1e morphism . which makes the following dia

gram

e il o




T
kE]"(A ) R\ @
1 > i p
t ¥ ~1an
K[E,E
: ker @
. D \\\\\ﬁ
k
N O

Im @
P Y

commutative, and we can assume x=:(AI+A;E)n T

"The global controllability condition of system (1)
Im(A 0" € In 2 SRR | (16)

is equivalent to the existence of a,K[g,£~11—quu1e morphism v which makes the fol-
lowing diagram '

(A, +A_E)
n 1 2 _ n
Kb((E)) > Kb((E))
m I 7 (17)
N G -, ¢
n
Kb((g))/kerg‘z

7 commutative.

In fact (16) is an easy consequence of the existence of v. Viceversa, assuming

§§_1 as the inverSe of # on ImZ, the inclusion (16) allows to define v= 3§”1 0
o (A, +A g)n which makes the diagram {17) commutative.

Theorem 7 Global controllability of the 2D system (1) is equivalent to reconstructi

bilityiof the system (10).

jo



i .

Proof. By the same arguments used in Theorem 6, the proof of the equivalence reduces

to show that diagrams (15) and (17) are dual.

g((g))/keré% can be viewed as the algebraic dual of Im @p.

Let s be any-é1ement in KE((E)) and denote by [s] its equivalence class modulo ker

Z. Then for any q in K[g,a—1]n, the relation (7)

First we prove that K

' T .1 )
< @pq,&]> = {g @p Sy E%)

defines a 11near functional on O K[g £ ] . Viceversa, given a linear functional f:
0, K[ S ] +K, there ex1sts ] b11atera1 power series s in Kb((g)) such that

'f‘co V=<0 q, [5]>
( pq) 50 [s]

for any q in K[g,g_11n, and [s] is uniquely determined.

Assume that the map y in (15) exists, and consider an irreducible matrix frac-
tion representation of it given by NQ-1. Then NQ—16?p is a po]yhomiaT matrix and
@p factorizes as |

) g, = QH - * : (18)

for some “H in K[5,& ]I]X ". (18) follows from the Bézout identity AN+BQ= In by pre

mu?t1p11cat1on by Q and postmultiplication by Q Op.

For any s 1is K" ((£)), the bilateral series g which solve the equation

b

Ws-a'g - : (19)

are equivalent modulo ker £, and the map .
I b o 5T
vi K ((8)) > K ((£))/kerZ = s¥> g

is a well defined K[£,£"1]—modu1e morphism. v is the dual mép of x. In fact

: . i ..
(") As cqmmon1y used in formal power series theory, (s,& ) denotes the coefficient
of £ in the series s.

{1

T 7 T
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ST

T T, -1\ T.T
x09,5> = (4 0,(Q ) N's,e?)

- (@ h @ Ws,e0) = (qTHNs,2°)

is equal to

S T
. <@pq,v[s]> = <@pq,[g]> =g @pg,£°)

U ol 7.7
= (@ HQg,e°) = (g H Ns,&°)

“for-any s in KB{(E)) and g in K[E,E—1]n-

4.  STATE FEEDBACK STABILIZABILITY

The structure of partial ordering which underlies 2D systems, makes possible to
consider state-feedback schemes which cannot be derived by simply extending 1D con-
cepts. It is clear that, following 1D phjiosophy, we can adopt inputs which depend
only on the states at the same “timg”'and/or inputs whose dynamic dependence on the
states fits with the causality induced by the ﬁartia! ordering in Zx Z. So, the
resulting systems still keep the state updating structure of a 2D system.

However, as it will formally stated later, it is poss1b1e to take into account

inputs which depend dynamically on the states but do not respect the causality 1ndu—

ced by the partial ordering of ZxZ. So doing, in general the 2D structure of the

or?gihal system is destroyed and so called [5] "weakly causal" 2D systems are obtai

ned. . ‘ _
In the following we shall give an insight on the application.of different sta-
te-feedback schemes to the stabilization of 2D sjstems given on the real field.
Referring to the state feedback structures, we can essentially deal with the
following two situations

/

a) state feedback preserving 2D causality

a1) siatics

ulh,k) = Kx (h,k) Ker *" (20)

T E—r——

b T

re—




az) 2D recursive:

q - p
u(h,k) = = ai.u(h—i,k—j)+ 3 Ki.Y (h=1:k=3) -
ieget i=0 " i
(21)
a.. R, g e X0
1J 1J
b) state féed@gck producing 2D weakly causal systems:
- Txn
‘u(h,k)_= v K. x{h-1,k+1) | Kj e R (22)
i=-M ! \
"oﬁ5 1n'fofmal power series notation ,
: m' ;
@, (g) =z Keg) Z (g) =Kz Z () 5
t e £ t
‘ =141
K(g) € R[z,e™'7 *"

Remark 4. State feedback (b) does not preserve the structure of the state updating

equation given by (1). In fact the computation of the local state at some point

(h,k) belonging to the separation set &

of %t—‘l

Consider a 2D system (A ,AZ,B

1 1772
feedback). We obtain a new 2D system

A = A +B.K , A

I R 2 = M

Recalling that the (AQ’A2°B1 2

mial det(I—A1z1nA222

[1,6], it is strightforward to see that if the 2D system (AJ,AE,B

lizable by means of static state feedback, tlien

t

1

2

Al

involves not only data at points of &

which are not causally related to (h,k).

t-1

“which are less than (h,k) in the partial ordering of ZxZ, but also data at points

,B_,C) and assume u(h,k) =Kx (h,k) (static state

27 1

(A pﬁ,rB,,BZ,C) where

= A _+B.K

) is devoid of zeros in the closed polydisc |i1|§_1, |22|§_1

I,BO,C) is stab

the pairs (Al,Bl) and (AZ’BZ) are

,B.,C) is internally stable if and only if the polyno-

.L‘_

S e
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‘stmultaneously stabilizable (%) .
As shown in the following example, the converse of the result above does not

hold.

Exémp]e. Consider the following 2D system

010 0
Ap=fo 01, B, = |0

0" 0 -3/4] 1

) [0 1 o] . Kl
A= 00 B, = | 0

0 0 3/4] ;g

"Sinceé the polynomial

det(I-(A,+B, K)z

1*8, -(A,+B.K)z.)

p(z)52)) ptoghi2y

1

By 2
z 12t k0\21+22) +k1(;1+22) +k2(z1+22) /

/ - - N ) ! !

I
—
+

vanishes in (-2/3,2/3) for any K= [k, k, k1 (Ay A, B
“state feedback. Nevertheless (A1,B

1,82—) is not stabilizable by

) and (A,,B.) are simultaneously stabilizable.

1 2" 2

Consider again a 2D system and assume a state feedback having structure (22),

ke

The glcbal state evolves accordingly to the following equation

Typq = [AR,E) (BB E)K(E)] 2

t t

(%) The idea of connecting 2D stability and simultaneous stabilization problems rai-
sed in some discussions with- C. Byrnes.

14
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(i)

& stab111zab1e

It is interesting to examine the following two cases

det Z = kgm, k#0. This condition corresponds to assume that

w(t+1) = (A +A E)u(t) + (B,+B,E)v(t) | (23)

1 1

is reachable as system over the ring IR[E,EHIJ. Consequently the polynomial

det(nI—_A1—A25+(B1+Bzg)K(g)) - ‘ ‘ (24)

"1n the indeterminate n is coeff1C1ent assignable and hence the 2D system is

Remark 5. It isimportant to point out that in this case the stabilization can be

achieved even when the pa{rs (A, ,B,) and (A ,B,) are not simultaneously stabilizable

1" 272

““as we can easily derive from the following system

(A]!A 819825(-:) = (2:331509_)

(i1) det @2 # kam. This cond1t1on corresponds to assume that the 2D system (1) is

.

globally reachable but (5) is not reachable as a system over R[g,& ] This
iﬁpi?es that the coefficients of the polynomial (24) cannot be arbitrarily as-
signed. However this type of state feedback alTow% us to stabilize 2D systems

in cases when static feedback does not give positive results. Actually the fol-

‘lowing example shows that this type of state feedback can solve the stabiliza-

tion problem even in cases when the pairs (A1,B1) and (A 5> ) are not simulta-

neously stabilizable.

Example. Consider the 2D system (A A ,B B ,-) = (-4.4,0,1, =%, ) The reachability

15

matrix £ = B,+B, =1 +%—g is not unxmodu]ar and the pairs (A B,) and (AZ,BZ) are

172 1771

not simultaneously stabilizable.

Assuming K(g) =4.8-1.2g, the characteristic polynomial

£-(B,+B,E)K(2)) - 1-0.4-0.4g+0.4£°

(n-—A1-F\ 5

2

shows that the free evolution of the global state asymptotically converges to zero.
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